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We compute the effective wavefront speeds of reaction-diffusion equations in 
periodically layered media with coefficients that have small-amplitude oscillations 
around a uniform mean state. We compare them with the corresponding 
wavefront speeds in the uniform state. We analyze a one-dimensional model 
where wave propagation is along the layering direction of the medium and a 
two-dimensional shear flow model where wave propagation is othogonal to the 
layering direction. We find that the effective wave speed is smaller in the 
one-dimensional model and is larger in the two-dimensional model for both 
bistable cubic and quadratic nonlinearities of the Kolmogorov-Petrovskii- 
Piskunov form. We derive approximate expressions for the wave speeds in the 
bistable case. 

KEY WORDS:  Reaction-diffusion equations; homogenization; traveling 
waves. 

1. I N T R O D U C T I O N  

We will consider travelling waves for reaction-diffusion (RD) equations 

ut = ~ (ai/(x)ux,)xj+f(u) 
i , j = l  

ul,=o=u0(x) 
(1.1) 

where a(x)= (ao(x)) is a smooth positive-definite matrix, 2n-periodic in 
each direction in R'. The nonlinear function f(u) is either the bistable 
nonlinearity 

f ( u )=u(1 -u ) (u -H)  , He(0, 1/2) (1.2) 
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or the quadratic nonlinearity 

f ( u )  = u(1 - u) (1.3) 

of the Kolmogorov-Petrovskii-Piscunov (KPP)  form. (~1~ Traveling wave 
solutions of (1.1) have the form u = U(k.  x - c t ,  x), where the direction of 
propagation k ~ R  n is a unit vector, c =  c(k) is the speed, and the wave 
profile U = U(s, y), s = k .  x - ct, y = x, satisfies the equation 

(kas + Vy). [a(y)(kas + Vy) U] + c U, + f ( U )  = 0 

g ( - o o ,  y )=O,  U(+ oo, y ) =  1 (1.4) 

U(s, �9 ) 2~-periodic 

When a ( x ) = I ,  the identity, (1.1) is the usual reaction-diffusion equation 
in a homogeneous medium, the traveling wave solution has the form 
U(k.  x - ct), and (1.4) is an ordinary differential equation for U as a function 
of s. For a medium with periodic structure it is reasonable to look for wave 
profiles that also have periodic structure, along with their usual form in the 
direction of propagation, as is common in homogenization problems. (2) 
For listable nonlinearities (1..2), traveling waves and their stability are 
analyzed in refs. 1 and 7 in the homogeneous case. For K P P  nonlinearities 
they are analyzed in refs. 9-11. Xin ~1~) showed that if a(y) is close to a 
constant positive-definite matrix, then (1.4) admits a unique solution (U, c) 
up to a constant shift in s, with c < 0. This traveling wave solution is stable 
in one space dimension. In the multidimensional case it is not known if the 
traveling waves constructed in ref. 15 are stable. 

We see from (1.4) that the wave speed c and wave profile U are 
coupled and must be determined together. However, in the K P P  case the 
asymptotic speeds can be determined independently of the wave profile and 
Gartner and Freidlin (1~ obtained the following result: If u0 is nonnegative 
( ~ 0 )  and compactly supported, then there exists a number c*(k), the 
asymptotic speed in the direction k, such that l i m , ~  u(t, c t k )=  1, if 
0 ~< c < c*(k), and lim, ~ oo u(t, ctk) = 0, if c > c*(k). To compute c*, let 

L y u =  ~ ( S x -  y j ) [a~ j (y ) (8~-  y~)u] + f , ( 0 )  (1.5) 
i , j--1 

where y e R n is any constant vector and u is any smooth 2n-periodic function. 
Let 2 = 2(y) be its principal eigenvalue with positive eigenfunction. It can 
be shown that 2 is smooth and convex in y. Then 

2(y) 
c*(k) = inf (1.6) 

~,k~>0 (y, k) 
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In this paper, we calculate approximately the speed of the traveling 
wave in a periodically layered medium, fluctuating around a constant state 
with mean one and small variation. We compare the wave speed in the 
layered medium (the effective wave speed) with that in the constant state 
and see how the medium affects it. We consider two model problems of 
propagation in layered media. In Section 2 we analyze traveling waves in 
a two-dimensional shear flow where the flow is layered in the yl direction 
and the wave is propagating in the Y2 direction, orthogonal to the direction 
of layering in the flow. We derive an approximate formula for the speed of 
the traveling wave, up to second order in the variations of the shear flow. We 
find that the speed in the two-dimensional layered medium is larger than 
that in the uniform medium. In Section 3 we analyze a one-dimensional 
problem where the wave propagates along the layering direction of the 
medium. As in the 2D shear flow model the qualitative behavior of the 
wave speed depends only on the form of the nonlinearity f(u) and not on 
the detailed properties of the medium. The approximate calculation of the 
speed requires the determination of a set of constants which are related to 
the solution of certain second-order ordinary differential equations on R1. 
Solvability of the ODEs is studied in ref. 15. Here they are solved numerically 
using a finite-difference method and the constants are then computed. Our 
numerical results show that the wave speed decreases in the layered 
medium. 

In Section 4 we give the corresponding qualitative results for the effective 
wave speeds in the case of KPP nonlinearity by using formula (1.6). It turns 
out that the same phenomenon occurs: speedup in the two-dimensional shear 
flow model and slowdown in the one-dimensional layered medium. These 
results are analogous to what happens to the effective diffusivity in the 
corresponding linear problems. It increases in the two-dimensional shear 
flow case and decreases in the one-dimensional case. 

2. WAVE SPEED IN A 2D SHEAR FLOW MODEL 

The reaction-diffusion equation in a two-dimensional shear flow is 

ut=Au+ W.Vu+ f(u) 

w=(O,W(yl)), A = ~  2 + 0  2 (2.7) 
Yl Yl Y2 Y2 

f (u)=u(1-u)(u-#),  #~(0, 1/2) 

where w(yi) is a smooth periodic function with period 2m A traveling wave 
moving in the Y2 direction has the form 

u=q~(y2-ct, yl)=Cp(s, yl), s= y2-ct  

822/63/5-6-8 
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Substituting the above into (2.7), we see that CO satisfies 

COss + COy~ y, + [c + w(y l ) ]  COs + f(CO) - 0  

CO(- m, y l )  = O, CO(+ oo, y ~ ) =  1, cO(s, .) 2z-periodic 

and we add a normalizat ion condit ion 

(2.8) 

1 s l 
0 CO(0, y , ) d y ~ = ~  

to make the solution unique. The traveling wave equation (2.8) has also 
been studied in ref. 5 for a premixed flame propagat ion model with 
Neumann  boundary  conditions on y~ and combust ion nonlinearity. For  
the derivation of this model and its physical background,  we refer to 
refs. 12 and 14. 

We are interested here in the effects of w ( y i )  o n  the speed c. If w(y l )  
is a small mean-zero periodic function, will c be larger than the speed in 
the uniform medium or smaller? We expand w(y~) in terms of a small 
parameter  6, 

W ( y l )  = ~ W x ( y l )  + O 2 w 2 ( y l )  -+- . - .  (2.9) 

where wi(y l )  ( i =  1, 2,...) have mean zero over [0, 2hi .  Now expand the 
traveling wave and the speed 

CO -- COo + 6COl + ..- (2.10) 

C=Co+6Cl + . . .  (2.11) 

and plug these expansions into (2.8). We obtain the following equations up 
to 0(62): 

0(1): 

O(a): 

0(82): 

coo, ss + Cocoo,, + f(coo) = 0 (2.12) 

COl,ss+COl, yly,+Cocol,s+ f'(COo)COl=--[Cl +WI(yl)]COO, s (2.13) 

CO2, ss "~- CO2, Yl Yl "1- C 0 CO2, s "~ f '(coo) CO2 

= -clcol,,-c2COo, s - w l c o l , s - W z c o o . s -  1/2f"(COo)CO~ (2.14) 

F rom (2.12), we get COo = ~0o(S), COo(0) = 1/2, and Co = co(f) ,  solution of the 
usual traveling wave equation 

CO" + cq~' + f(CO) = 0 

CO( - oe ) = 0, CO(0) = 1/2, (p( + oe ) = 1 
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The solvability condition for (2.13) is 

f [Cl+Wl(Yl)](PO, sOdXdyl=O 

where ~ = e"~ spans the null space of the adjoint of the linearized ~b 
equation and the integral is over R~x [0, 2n]. Thus c~ = - ( w l ( y ~ ) ) = 0 .  
We use ( . )  to denote the average of the function inside the bracket over 
[0, 2~z]. Equation (2.13) then becomes 

q)l,ss+@l,ylyl+Co(,Ol,s+ f ' (~o)(Pl  = --wl(y~)q)O,s (2.15) 

Let (., -) denote the inner product over R ~ x [0, 27z] divided by 27z. From 
(2.14) we have 

1 - 2 c2(r ~) + (wl (O~,s, ~) + ~(f  (CPo)q~l, ~b) + (w2~Po,,, ~) = 0 (2.16) 

The last term on the left-hand side is equal to zero since w2 has mean zero 
and so 

~(f  (Oo)~Pl, ffJ)--(Wlq)i,s, ILl) C2((~O,s , I//) = - -  1 " 2 

Since f"(q%) = - 6 9 0  + 2~ + 2, 

C2(q)0, s, //1)~--- (3(PO-- # - -  1)(])12, @ ) -  (WI q?l.s, @) 

with 

(~Oo,,, O) = f q)o, seC~ ds R 1 

and 

and 

(2.17) 

((3~po #-1)~o2, ,P)  f (3q, o ,. 1) cos . . . .  ~Oo,,~e ((Pl)dS 
R 1 

We solve (2.15) by Fourier series. Let 

wl(Y,) = ~ bm eimyt 
m:#O 

r  2 am(S) eimyl 
m#O 
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where we have used the fact that (~bl) = 0. We substitute these expansions 
into (2.15) and collect Fourier coefficients to get 

a"  + coa'm + [f'((Po) - m2] am = -bm(~ (2.18) 

Note that ~Oo, s satisfies 

a~, + Coam + f'(~Oo)am = 0 

and (2.18) has the unique solution 

bm 
am=~g qO0, s (2.19) 

Thus 

where 

Let 

and 

Then 

where 

By (2.19), we have 

]bml2 qo2 
(q~l~) = ~ o -  ~ o,, 

/~o 2 

/~=E m4 
m•O 

J= -(Wl'pl,~,, 0) 

c 2 = 3 f i i +  J- 

f s 2 cos c~ = (PO.s e ds 

bm 
q)l(S' Yl)=q)O,s E - ~  C'myl 

m~O 
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and so 

Let 

Then 

Therefore 

J =  - ( W l  (Pl,s, @ ) 

= - I ~ ,  < w l q < , > O d s  

= - - ; S ( m ~  Ibml2~ . . . .  eCOSds 
o -Gw] 

Ibml 2 
7 = ~ m 2 

m:~O 

J =  - 7  f R1 q)~176176 ds 

= --7- f (,~2 ~ .COS ds 2 RI t,~O, sls~ 

~) f R 2 cos =~Co ~%'se ds 

? 
= -- ~s 2 

(2.20) 

C 2 = - - I +  C 0 (2.21) 

Next we compute I= I (# ) .  In the case o f f (q ) )=  r (p)(~o-p) with 
/z e (0, 1/2), we have Huxley's explicit expressions for qo o and Co, 

~o o = [-! + e x p ( - s / ~ ) ] - '  

2 # -  1 
CO = N ~  

Let 

q)oq)o,~e ds I1 = f R~ 3 cos 



922 Papanicolaou a n d  Xin 

and 
# + l . I .  3 cos I2 - 3 -,,1 ( ~ 1 7 6  ds 

so that I=  I ~ -  I2. We will show that I 1 = I2 and hence that I =  0. Since 

(%,, = ( l /x /2)[exp(-s / .~ /2)]  [1 + exp ( - s /x f2 ) ]  -2 
we have 

I1= f+oo [1 + e x p ( - s / x / 2 ) ]  1 (1/,,/2)3 exp( -3s /x /2)  
- o o  

x [1 + exp( - s / x / 2 ) ]  -6 exp(c0s) ds 

= (1/2 ,,/2) exp( -3s /x /2) [1  + e x p ( - s / x / 2 ) l  7 
--oo 

x exp{ [(2# - 1)/x/2] s} ds 

,= s/.fi 1 f + ~o = ~ e x p ( -  3t/) e x p [ ( 2 # -  1)t/] [1 + exp( - t / ) ]  -7 dr 
oo 

y = e x p (  q) 1 ( . + o o  

J = 2 Y 2~+3(1 + y) 7 dy 
--0(3 

X=y+l 1 f+zc = - ( x -  1)3-2~x -7 dx 
2 1 

i f + ~ 1 7 6  1 ( 1 )  3 2~ 
2 1 x4+2 u 1 dx 

z=2/~ 1 f~ 
2 z4+Z"(1-z)3 2~'dZz 2 

1; 2 = 5 z2+2~(1-z) 3 2~dz 

1 
B(3 + 2#, 4 - 2#) (2.22) 

2 

where B = B(x, y) is the beta function. Similarly, we have 

1 # + 1  f o ~  12--5 3 y3-2~(1 + Y) 6dy 

l # + l f ~  - z I +2~(1 - z )  3-2~ dz 
2 3 

1 # + 1  
- -  B(2 + 2#, 4 - 2#) (2.23) 

2 3 
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Using the identities 

we obtain 

r(x)  r (y )  
B(x, y ) -  

r ( x  + y) 

r ( x  + 1) = xr(x)  
(2.24) 

B(3 + 2#, 4 - 2#) = 
F(3 + 2#) F(4 - 2#) 

F(7) 

2 + 2# F(2 + 2#) V(4 - 2#) 
6 F(6) 

# + 1  
- - -  B ( 2  + 2# ,  4 - 2 # )  

3 

which implies 

I1 = / 2  

We have shown therefore that I = 0  and hence the speed c(c5) has the 
expansion 

c(6)= Co (1 +-~ 62+ . . . )  (2.25) 

where 7 is given by (2.20) and the bm's a r e  the Fourier coefficients of 
wl(yl). 

Our result (2.25) says that waves propagating in a particular (a layered) 
divergence-free, mean-zero periodic medium speed up. This phenomenon 
has been observed in flame propagation through turbulent media, in refs. 6 
and 13, and formulas for the turbulent flame speed in terms of the laminar 
flame speed are similar to (2.25). 

3. W A V E  SPEED IN A 1D LAYERED M E D I U M  

In this section, we study the speed of the traveling wave solution of the 
1D bistable reaction-diffusion equation 

u, = (a(x)ux)x  + f ( u )  (3.26) 

where f ( u )  is given by (1.2) and a(x)  = 1 + 6al(x) ,  with al (x )  a smooth, 
2~-periodic, mean-zero function and 6 a small parameter. The traveling 
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wave solution has the form u = u ( x - c t ,  x ) = u ( s ,  y), where s = x - c t ,  
y = x. The wave profile u satisfies as a function of s and y the equat ion 

(8s + ay)[a(y)(as + ay)u] + CUs + f (u )  = o 

u( - o% y)  = 0, u( + o% y) = 1 (3.27) 

u(s, �9 ) 27z-periodic, <u(0, .  ) > = 1/2 

We write 
u(s, y )=u(s ,  y, 6)=~Oo(S)+6~(s,  y ) +  ... 

6 2 
c = c ( 6 ) = C o  + & 1 +  ~-  c2 + ""  

where qgo(S) and Co satisfy 

qgss + Coq~s + f(cp) = 0 

~o( - ~ ) = 0,  q~(0)  = 1 /2 ,  q~( + ~ ) = 1 

Let 

Lov = (8~ + 8y)Zv + CoVs + f~(~Po)V 

Expanding in powers  of 6, we find that  ~bl satisfies 

Lo(~t = - c '  q~O,s- (88 + 8y)[a , (8s  + 8y)CPo] (3.28) 

The solvability condit ion for (3.28) is 

( - -  C 1 qgo, s - -  (~3 s + ~ y ) ( a l ( O  s + ~y )  ~Oo) , r s ec~ = 0 

o r  

CI(~00, s, ~po.se c~ = - ( ( a s  + ay)[al(a~ + ay) q)o], ~Oo, se c~ 

= -(alCPo .... q~o,s ec~ 

= - -  ( a l ) ( q ) o  . . . .  ~Po, seC~ = 0  

Thus, cl = 0 .  Expanding  to order  6 2, we find that  ~b2 satisfies 

Lo~b2 = -c2CPo, s -  2(88 + 8y)[a~(8s + 8y)~bl] -f~u(~Oo)(~bl) 2 (3.29) 

The solvability condit ion for (3.29) is 

C 2 ( r  qgO, s ec~ = - - ( f u u ( f P o ) ( ~ ) l )  2 + 2(88 + ( ~ y ) [ a l ( ~ s  q- 0y)~l], (DO, s ecOs) 

= - (f~u(~Po)(~bl) 2 + 2a1(88 + 8s)~b~s, q~o,s ec~ 
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where ~bl is given by (3.28), which simplifies to 

L o q ) l  = - a l ,  .v qOo,~ - a l  qOo,.,.~ (3.30) 

We solve (3.30) by Fourier  series. Let 

a l =  ~ fim e;my, r io=0,  2 m2[flm12 < -FO0 

(J1 = Y.C~m e`mv, % = 0  

Then the Fourier  coefficients of ~b~ satisfy 

....... + (Co+2mi)~x ..... + [ - m 2 + f . ( % ) ] c %  = -imfl.,~OO.s-[3,,.,Oo,.. (3.31) 

Let qm satisfy 

q . . . .  + ( C o + 2 m i ) q  ..... + [ - - -m2+f . (~0o)]qm = --im~oo, s--qOo,~. ~ (3.32) 

so that ~,~ = fl.,q,,~. Then the second-order correction to the speed has the 
form 

c2(q%,,, qOo,,.e C~ 

= - - 2 f  [tim} 2 Iqml2f..(~~176 e<~ 
s 

- 2  ~, f~ ,Oo,~e <'~ Ifi,~[ 2( imqm,~  , + q ..... ) ds 

IfimlZf [f..(q)o)q~176 Zq)oeC~ . . . .  + imq ..... )] ds 
"s�9 

= - - ~  [flm[ 2 f, 40o,,e<W[L,(q0o)Iqm[ 2 + 2(q ........ + imqm,,)] ds 

Since from (3.32) ~ = q_,.,, we get 

q ....... + imq ..... = q . . . . .  - -  imq m , s  (3.33) 

and hence 

where 

c2(q~o,,,qOo,.,.e<~ 2 y, Iflmi2B., (3.34) 
m > 0 

B., = f,. ~Oo..,,e<~ z + 2 Re(q ...... , + imqm..,,)) ds (3.35) 
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Note that the Bra's are independent of a~(y)  and depend only on the 
nonlinear function f, since (Cpo, Co) and qm are determined by solving 
ODEs involving f If q,,, = Pm -}- irm, then (3.32) becomes 

p ........ + Co Pm,, -- 2mr ...... + [ --m 2 + f,(qOo) ] p, ,  = --~Oo,~, , 

r ..... + Co r .... + 2mp ..... + [ - - m  2 + f,(qOo)] rm = --mq~o,~ (3.36) 

and the B,, ' s  can be written as 

f 
+oc~ 

--  vo e C ~  2 2 B m =  ~Oo,~ [ f ,u (~Oo)(p , , ,+rm)+ 2(p  ..... . -mrm,. , , )]  ds (3.37) 

which after integration by parts gives 

c0 s co ~ 2 2 
B m =  2((Po,,eC~ )srm+qOo,,e j ~ , u ( P o ) ( p m + r m ) d s  

- v c  

(3.38) 

1 ~ 3 )  Since c = Co + 26-c2 + 0 ( 6  and Co is negative, we see from (3.34) that if 
the B m are positive, then the perturbed speed is larger (in absolute value); 
otherwise, if the Bm are all negative, then the perturbed speed is smaller (in 
absolute value). If some B~, are positive and some are negative, then the /~m 
or al ,  must be taken into account. 

We use a finite-difference method to compute the Pm and r m from 
(3.36) on a large enough finite interval I - N ,  N] with zero Dirichlet 
boundary conditions at the two endpoints. We use the double-precision 
Linpack routines to solve the linear equations that result from the 
discretization of the ODEs. Then we calculate the B,, from (3.38) using a 
double-precision integration routine from Naglab. We also use Huxley's 
formulas for (~Oo, Co). We verified that the numerical scheme converges as 
the grid is refined. We describe here the results of two typical runs. The first 
is done on the interval [ -  10, 10] with 500 grid points, and # = 0.15, where 
# is the middle zero point o f f ( u )  = u(1 - u)(u - #). We compute BI to Bloo 
and find that they increase slowly from -0.0915 to -0.08053. They are all 
negative. The second run is done on the interval [ - 2 0 ,  20] with 2000 grid 
points and #=0.30.  Now B 1 to  Bso 0 increase slowly from -0.05981 to 
-0.03660 and again they are all negative. In all the runs we observed slow 
convergence of the Bm to some negative constant. 

These numerical results show that the wave speed is smaller in the 
layered medium. 
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4. EFFECTIVE W A V E  SPEEDS IN THE KPP CASE 

In this section, we use formula (1.6) to calculate the effective wave 
speeds in the model problems of the previous two sections with K P P  
nonlinearity (1.3). Since 2(y) is smooth and convex, the infinum in (1.6) is 
achieved at a finite point and thus it is enough to analyze 2 over a compact 
set of y. By the Krein Rutman theorem, )~ is a simple eigenvalue of Ly, so 
it is stable under perturbation. In our calculations we will drop the term 
f , (0 )  in (1.5) because it only shifts 2 by a constant. 

First we treat the shear flow model. The eigenvalue problem for 2 is 

Lyu=(Ox, zl)zu-}-(Ox2- Z2)2u+dw(yt)(~x2- Y2)U=.)cu 

u = u ( x ,  6 ) =  1 + g)u l (x )  + f 2 u 2 ( x )  + . . .  (4.39) 

= ;.(y, ~5) = }~o(Y) q- c~.~,(y) q- a 2 2 2 ( y )  q- . - .  

where )oo(y) = y2 + y2. Denoting by a prime differentiation with respect to 
6, we get from (4.39) 

(ax,- y~)~u' + (axe- y~)~u' + w(x~)(a~- y~)u + ~w(.v~)(a~- y~)u' 

= 2 ' u +  ,iu' (4.40) 

and 

( 0 ~ -  y~)2 u" + (0x2- y2)2u" + 2 w ( x ,  )(0x2- y2)u' + 3w(x l ) (~3x  2 - y 2 ) u "  

= 2"u + 2)/u' + ).u" (4.41) 

Letting 6 = 0 in (4.40) gives 

(c~ - y~ )2u' + (3x2 - y 2 ) 2 u ' - w ( x ~ ) y 2 = ) / + ( y ~ +  y 2 ) u  ' (4.42) 

o r  

u.'q.q + u~2x 2 - 2 y l  u.'~ 1 - 2y2  u.'~ 2 - w ( x ] )  Y z  = 2 '  

Averaging over xl and using ( w ) =  0, we get 

;+'=;+~(y)=o 

and hence 

(4.43) 

~J.u'- 2y-V.u'=w(x,)  y2 

The only solution of this equation is u' = u'(xl) with 

U;vt q - -  2 y l  Ulvt = W(Xl ) Y2 

(4.44) 

(4.45) 
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Letting c~ = 0 i n  ( 4 . 4 1 )  gives 

(6qx~ yl)2U" if- (Or2 y 2 ) 2 u " q - 2 w ( x l ) ( O x 2  y2) u' =--}~" if-}~o u" (4.46) 

o r  

A ~u" - 2 y .  V ~ u "  + 2 w ( x l  )(u'~ 2 - y 2 u ' )  = 2" 

and averaging over x gives 

(4.47) 

) t t  t = 222(y) = 2(W(Xl)(Ux2- y2u ' ) )  = ( - 2 y 2 ) ( w ( x l ) u ' )  

Let us solve (4.45) by Fourier series 

(4.48) 

w(x~)= 

Substituting into (4.45) gives 

im ~ 1 t 
e u m 

rn~-O 

cim.r 10~rn 

m ~ O  

Y2~m ! 

Um= --rn  2 _ 2my1 i 

and so 

( w ( x ~ ) u ' ) =  Y, Ic~ml 2 y2 
--  m 2 --  2my1 i 

m r  

=2y2 ~ ]C~mLaRe _ m 2  2 m y l i  
m > 0  

_ m  2 

=2y2 Z h~l ~ m>o m4 + 4m2y~  

Therefore by (4.48) 

o r  

2"=  4y 2 2 
r r t > O  

1 I~ml 2 
m 2 + 4y~ 

,t(y, 6) >/.~o(y) 

> 0  (4.49) 

(4.50) 

which implies that 

,t(y, 6) ,~o(y) 
- -  >~ inf - -  

Y 2  y z > o  Y 2  
c*(c5) = inf = c*(0)>0 (4.51) 

Y2 > 0 
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This means that the effective wave speed is larger than the corresponding 
speed in the uniform medium in the shear flow model. 

Let us now turn to the 1D model. The eigenvalue problem for 2 is 

L y u  = (Ox - y)[(1 + ~5al)(~ x - y ) u ]  = ,,{u 

u =  1 + 6u~ + 6 2 / , / 2  + " ' "  
(4.52) 

.~ = y2 + ~ 2 1 ( y  ) + r + . . .  

( a l )  = 0  

Differentiating (4.52) twice with respect to 6, we get 

( O x - y ) [ a l ( ~ ? x - y ) u ] + ( O ~ - y ) [ ( l + 6 a l ) ( ~ ? x - y ) u ' ] = 2 ' u + 2 u '  (4.53) 

and 
2(C~x- y)l-al(ax - y ) u ' 3  + (8x - y)[(1 + 6 a , ) ( 0 ~ -  y ) u " ]  

= 2"u + 22'u' + 2u" (4.54) 

Letting 6 = 0  in (4.53), we have 

- (Ox - y ) (a l  y )  + (Ox - y ) 2 u '  = 2 '  q- y 2 u '  ( 4 . 5 5 )  

o r  

- y (a l ,x  - ya~) + U'~x - 2yu" = 2' (4.56) 

Averaging over x, and using ( a l )  = 0, we get 

2 ' = 2 1 ( y ) = 0  
We then have 

u'xx - 2yu'x = y(a l ,x  - ya~) (4.57) 

Letting 6 = 0 in (4.54), we get 

2 ( O x - y ) [ a l ( O x - y ) u ' ] + ( O x - y ) 2 u " = 2 " + y 2 u "  (4.58) 

Averaging over x gives 

2" = ( - 2 y ) ( a l ( U ' x -  y u ' ) )  (4.59) 

Let us solve (4.57) by Fourier series 

a l  ~- 2 eimXo~m 

m~aO 

ldt ~ Z imx t e bl m 
m # O  
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Substituting into (4.57) gives 

J 
h i m  m 

y~ . , ( im  - y )  

- m 2 - 2ymi  
(4.60) 

and so 

2" = ( - 2y) (a , (u"  - yu ' )  ) 

(im - y)2 
= ( - 2 Y  2) 2 IC~ml 2 

m # O  - m 2 -  2y mi  

~y2 - m 2 - -  2yrni~ 
= ( _ @ 2 )  2 ICr 2 Re [ ---m~-_--~- ~ J 

m > 0  

= ( _ _ 4 y 2 )  ~ i G ~ , 1 2 R e { y 2 - m 2 - 2 y m i ) ( - m 2 + 2 y m i ) }  
m > 0 m4 + 4Y 2m2 

m 2 -~ 3y 2 
= ( _ @ 2 )  ~ [em12 

m2 <0  m>0 + 4 Y  2 

which implies 

(4.61) 

2(y, 6) ~<2(y, O) 

or 

c*(6) ~< c*(0) 

This means that the wave speed in the 1D layered medium is less than that 
in the corresponding uniform medium. We conclude that the qualitative 
behavior of effective wave speeds in the K P P  case is the same as that in the 
bistable case. 
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